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Energy Management – key concept 

1. Computational devices are designed for the peak 
performance 

2. But mostly are used in average condition  
3. Energy management policies adapt with different 

granularities and with different mean the system 
performance and power to the user requested service level 

4. As the number of resources increase the same functionality 
can be achieved with different HW composition. The energy 
management selects the one that preserve performance 
while minimizing the energy consumption 
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Outline 

 Power in digital systems 

 Energy Management  

 Monitoring 

 Task Allocation 

 Reconfiguration 
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Dynamic Power 

 Linear ↓ with ↓ CEffective 

 Linear ↓ with ↓ f 
 Quadratic ↓ with ↓ Vdd 
 Cubic ↓ with ↓ both Vdd and f 

David H. Albonesi ACACES10 



Sub-threshold Leakage Current 

 
 
 
 
 

 
 Exponential ↓ with ↓ Vds 
 Exponential ↓ with ↑ VTH 
 Exponential ↓ with ↓ T 

David H. Albonesi ACACES10 



Alpha-Power Thermal Model 
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Delay Trend 

 For wires, the resistivity is linearly dependent from T  
 Delay increases as T increases 

 For LVT cells (Vdd >> Vth) 
 μ dominates w.r.t. Vth 
 Delay Increases as T increases 

 For HVT cells (Vdd ≈ Vth) 
 Vth dominates w.r.t  μ 
 Delay decreases as T increases, Indirect Temperature Dependence 

(ITD) 



Thermal Behavior of CMOS gates 

 

ITD 



Power Wall 

 
Here is a Clue to the Problem 
The problem is now called “the Power Wall”. It is illustrated in this figure, taken 
from Patterson & Hennessy. 

• The design goal for the late 1990’s and early 2000’s was to drive the clock rate 
up. This was done by adding more transistors to a smaller chip. 

•  Unfortunately, this increased the power dissipation of the CPU chip beyond the 
capacity of inexpensive cooling techniques 



Roadmap for CPU Clock Speed: Around 2005 

 

Here is the result of the best thought in 2005. By 2015, the clock 
speed of the top “hot chip” would be in the 12 – 15 GHz range. 



The CPU Clock Speed Roadmap  
(A Few Revisions Later) 

 

This reflects the practical experience gained with dense chips that were literally 
“hot”; they radiated considerable thermal power and were difficult to cool. 
Law of Physics: All electrical power consumed is eventually radiated as heat. 



The MultiCore Approach 

Multiple cores on the 
same chip 
 Simpler 
 Slower 
 Less power demanding 

[ Intel® Multi-Core Processors Making the Move to Quad-Core  and Beyond] 



Outline 

 Power in digital systems 

 Energy Management  

 Monitoring 

 Task Allocation 

 Reconfiguration 
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Attacking Dynamic Power 

 Dynamic Voltage and Frequency Scaling (DVFS) 
 Reduce voltage, frequency, or both 
 Exploit slack in application execution 
 Cubic dynamic power savings 

 Reduce effective switching capacitance 
 Exploit idle or underutilized hardware resources 
 Match hardware resources to application behavior 
 Linear dynamic power savings 
 Complementary to DVFS 

David H. Albonesi ACACES10 



O.S 

General Architecture 
 • System 
• Sensors 

– Performance counter 
- PMU 

– Core temperature 
• Actuator - Knobs 

– ACPI states 
– P-State  DVFS 
– C-State  PGATING 

– Task allocation 
• Controller 

– Reactive 
– Threshold/Heuristic 
– Controller theory 

– Proactive  
– Predictors 

 

Simulation snap-shot   
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State-of-the-art 

Dynamic Voltage Frequency Scaling –Two approach in litterature: 
 Power Budgetting and Capping[1]: 

 Use built-in power meters as inputs to close-loop feedback controllers for constraining 
the power consumption to a given budget by reducing the cores clock frequencies. 

 Pros : Avoid power overshots; 
 Contra : Requires power meters, Significant performance penalties;  

 Capping mostly cpu-bound task, more sensitive to performance penalties 

 Energy Minimizzation [1][2][3][4][5]: 
 Identifing program phases 
 Scale the frequency to reduce the stall cycle slack and idleness. 
 Low performance overhead 

 [1] Z. Wang et al. Feedback Control Algorithms for Power Management of Servers 2008. 
[2] K. Flautner et al. Vertigo: automatic performance-setting for Linux  2002. 
[3] G. Dhiman, Dynamic voltage frequency scaling for multi-tasking systems using online learning, 2007. 
[4] W.Y. Liang Memory-aware dynamic voltage and frequency prediction for portable devices 2008 
[5] A.Bartolini Thermal and energy management of high-performance multicores 2013 



DVFS – with deadline or “on-demand governor” 

Key idea: Exploit slack by scaling V & f to run evenly 
across a time quantum 

Linux on-demand governor:      
 frequency ~ cpu-load 

  



DVFS – Memory slack 

CPU BOUND TASK 
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•Power Saving 
• No performance Loss 
• Higher Energy Efficiency 
 



MP-aware DVFS 

 Multi-node system - exploit communication slack 
 Tested on the intel single cloud computer 
 Iterative search the minimum energy 
 Four searching policy 

 MP agnostic 
 Random 
 MP-aware: scales down communicating core 

frequency consistently 
 Fully-Connected MP-aware: scales down  

the frequency of all communicating cores at  
the same time 
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A.Bartolini «Quantifying the Impact of Frequency Scaling on the Energy Efficiency of the SCC» 2012 



Moore’s Law Twilight Era 
ENERGY EFFICIENCY 

NEAR THRESHOLD 
COMPUTING 

PERFORMANCE LOSS 
? 

VARIABILITY 
? 

FUNCTIONAL FAILURE 
? 

65nm SRAM cell @ NTC  
failure rate : 5 OM higher 

multi-core 
parallel architectures 

10x improvement! 

memory Vdd ↑  

Near Threshold Computing 

21 

NTC pushes the architecture 
towards a topology in which several 
processing elements communicate 

with each other through a fast 
shared L1 memory system 



• Critical path delay is affected by temperature [C10] 
• ULP devices in NTC are intrinsically safe from self-heating 

• Die temperature is hot-spot free → Tsystem ≈ Tamb 

• Ambient temperature has strong variations 
• daily/seasonal fluctuations 
• indoor/outdoor transitions 

 

[C10] Calimera et al., Reducing Leakage Power by Accounting for 
           Temperature Inversion Dependence in Dual-Vt Synthesized Circuits  

Variability and Ambient Temperature  

22 
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Performance Variability can not be effectively addressed 
Only by adopting static solutions requiring reactive runtime solutions 

To compensate ambient temperature-induced variations 
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@ run-time 
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Power Management in ULP 

uP1 

MEM 

uPn 

ACC1 ACC1 ACCn 

System-level management of variability for energy-efficient multi-core processors 

• Monitoring - Workload, HW run-time characteristics status 

• Re-configuration – Tune Power/Resiliency/Speed to user need 

• Task Allocation – Optimal resource usage 
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TCDM 

Monitoring – online  profiling [Rahimi 2013 DATE] 

 Task descriptors created upon encountering a task directive 
 Task fetched by any core encountering a barrier 

 
 task directives identify given portions of code (tasks) 
 A task type is defined for every occurrence of the task directive in the program 

 

#pragma omp parallel 
{  
  #pragma omp single 
  { 
   for (i = 1...N) { 
    #pragma omp task 
    FUNC_1 (i); 
 
    #pragma omp task 
    FUNC_2 (i);  
   }     
  } 
}  /* implicit barrier */ 

Task queue 

Push task 

Fetch and execute (FIFO) 

Task descriptor 

two task types 



Architecture 

 Every core is equipped with: 
 Error sensing (EDS [1]) 

 detect any timing error due to dynamic delay variation 
 Error recovery (Multiple-issue replay mechanism [2]) 

 to recover the errant instruction without changing the clock frequency 
 

[1] K.A. Bowman, et al., “Energy-Efficient and Metastability-Immune Resilient Circuits for Dynamic Variation Tolerance,” IEEE Journal of Solid-State Circuits, 
44(1): 49-63, 2009.  
[2] K.A. Bowman, et al., “A 45 nm Resilient Microprocessor Core for Dynamic Variation Tolerance,” IEEE Journal of Solid-State Circuits, 46(1): 194-208, Jan. 
2011.  
[3] S. Miermont, P. Vivet, M. Renaudin ,“A power supply selector for energy- and area-efficient local dynamic voltage scaling,” Proc. PATMOS, pp. 556-565, 
2007.  
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Delay Variability Among Pipeline Stages 
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• We analyze the effect of a full 
range of operating conditions 
 (temp. range -40C−125C, volt. range 
.72V−1.1V) on the delay a LEON 
processor in 65nm TSMC. 

• The execute and memory parts are very 
sensitive to voltage and temperature 
variations, and also exhibit a large 
number of critical paths in comparison 
to the rest of processor. 

• Similarly, we anticipate that the 
instructions that significantly exercise 
the execute and memory stages are 
likely to be more vulnerable to voltage 
and temperature variations 
Instruction-level Vulnerability (ILV) 

VDD= 1.1V 

T= 125°C 



Inter- and Intra-Corner TLV 
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Voltage variation

 TLV across various type of 
tasks: TLV of each type of 
tasks is different (up to 9×) 
even within the fixed operating 
condition in a corei (as 
observed in ILV). 

 Inter-corner TLV (across 
different operating 
conditions) 
 The average TLV of the six types 

of tasks is an increasing function 
of temperature. 

 In contrast, decreasing the voltage 
from the nominal point of 1.1V 
increases TLV. 



TCDM 

task types 

cores 
TLV-table 

Variation-tolerant OpenMP tasking 
 

 Online TLV 
characterization 
 TLV table: LUT containing TLV 

for every core and task type 
 Kept in L1. Parallel inspection 

from multiple cores 
 Each core collects TLV 

information in parallel 
 Distributed scheduler 
 LUT updated at every task 

execution 
 

void handle_tasks () { 
 while (HAVE_TASKS) {  // Task scheduling loop 
  task_desc_t *t = EXTRACT_TASK (); 
  if (t) { 
   float Otlv = tlv_read_task_metadata (core_id); 
   /* Reset counter for this core */ 
   tlv_reset_task_metadata (core_id); 
   /* EXEC! */ 
   t->task_fn (t->task_data); 
   /* We executed. Fetch TLV ...*/ 
   float tlv = tlv_read_task_metadata (core_id); 
   /* Update TLV. Average new and old value */ 
   tlv_table_write(t->task_type_id,                            
  core_id, (tlv-Otlv)/2); 
  } 
 } 
} 
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#pragma omp parallel 
{  
  #pragma omp single 
  { 
   for (i = 1...N) { 
    #pragma omp task 
    FUNC_1 (i); 
 
    #pragma omp task 
    FUNC_2 (i);  
   }     
  } 
}  /* implicit barrier */ 

TCDM 

TLV-aware extensions 

 Variation-tolerant OpenMP scheduler 
 Proactive scheduling. Idle processors trying to fetch a task check if their TLV for the task is 

under a certain threshold to minimize number of errant instructions (and costly replay cycles) 
 limited number of rejects for a given tasks, to avoid starvation 

Task queue 

Fetch and execute (FIFO) 

TLV-aware fetch 

Task descriptor 
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Task Allocation 

• Proposes a task allocation technique which provides a near-optimal solution 
• The technique can be applied at run-time 
• It is based on a 2-step problem formulation 
FORMULATION HYPOTHESIS 

T1 T2 T3 T4 

WORKLOAD: 
1. The tasks are independent and synchronized 

on a barrier 
2. The length of the tasks in terms of 

instructions is known 

PE4 PE3 PE2 PE1 

PLATFORM: 
1. PE can be active or idle 
2. For each PE are known its own  

• Clock frequency 
• Power consumption in active 
• Power consumption in idle 

GOAL: find a task allocation technique for variability-affected multicore platform 
which minimizes the energy consumption while meeting a performance constraint 

obtained by on-chip or on 
board sensors (post silicon) 

[Paterna TC 2012] 



LP+BP problem formulation 
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1° step, LP formulation:  
•disregards the task granularity but only considers the total number of instr. 
•provides the cycle budget of each core (how many instr. a core can execute) 

• Variability 

• Time Constraint 

• Total task lengths 

INPUT 

Key properties! It can be solved through a closed form 
No time-demanding Algorithm (i.e. Simplex) 



Closed Form Solution 
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• Two candidate solutions (i.e. meet the time constraint) 
• Take the one which makes the platform to consume less energy 

Proven to be optimal!!! 
[2012 Paterna TC] 
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LP+BP problem formulation 
2° step, Bin Packing formulation: it considers the task granularity  
                                                         it fits the tasks into the cycle budgets  

LP+BP provides a near-
optimal solution and can 
be definitely applied on-
line 



Energy 
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MPEG2: Energy vs. Frame-rate 

Comparison 
against  
Rank techniques 
[R. Teodorescu 
 SIGARCH, ’08] 
 
and a random 
allocation 
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 emerging paradigm for signal acquisition/compression [Donoho06] 
 enables sub-Nyquist sampling rate for sparse signals 
 reduces the amount of samples required in processing and storage 

Compressed Sensing [Bortolotti 2014 Date] 

• Sparsity of 𝐱𝐱 with constraints on 𝚽𝚽 → convex optimization problem 
• ECG: 𝐱𝐱 is not sparse in time domain but is sparse in a wavelet 

domain 
• SoA: low-power embedded ECG monitoring  [Mamaghanian11] 

Input bio-signal 
vector 

(𝐱𝐱 ∈ 𝐑𝐑𝐍𝐍) 
Sensing Matrix 

(𝚽𝚽 ∈ 𝐑𝐑𝐌𝐌×𝐍𝐍) 

Measurements 
vector 

(𝐲𝐲 ∈ 𝐑𝐑𝐌𝐌) 

𝐲𝐲 = 𝚽𝚽 𝐱𝐱 𝐌𝐌 ≪ 𝐍𝐍 



 medical grade monitoring requires multi-channel signal analysis 
 multi-channel processing for several biosignals (ECG, EMG,…) is often 

embarrassingly parallel 
 multi-core architectures enable more aggressive voltage-frequency 

scaling than single-core solutions 
 

 SoA [Dogan12, Munir13] 
• proved their efficiency compared to single-core solutions 
 at ultra-low workload requirements leakage dominates 
 aggressive voltage scaling cannot be applied due to reliability 

issues for the memories 
 
 

Multi-core Architecture 



 Voltage Scaling is an effective technique to improve energy efficiency 
 Embedded SRAM memory 

 Energy bottleneck at low-voltage 
 classic 6T cell structure has reliability issues 

Voltage Scaling and Memory 

6T-
cell 

6T 
SNM 

8T-
cell 

8T 
SNM 

• Alternative SRAM designs (8T, 10T, SCMEM...) 
– more robust 
– area overhead 



 Voltage Scaling is an effective technique to improve energy efficiency 
 Embedded SRAM memory 

 Energy bottleneck at low-voltage 
 classic 6T cell structure has reliability issues 

Voltage Scaling and Memory 

6T-
cell 

6T 
SNM 

8T-
cell 

8T 
SNM 

• Alternative SRAM designs (8T, 10T, SCMEM...) 
– more robust 
– area overhead 

Why not Hybrid 6T/8T memory? 
ULP multimedia application [Chang11,Kwon12] 
• Not error-free (video degradation) 
• Custom SRAM design 



• SENSING :  low memory footprint, low workload 

Idea 
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• COMPRESSING :  high memory footprint, high workload 

• A typical biosignal digital node spends most of the time in sensing and a 
small portion of time in compression 

                 Example : 256 samples/1sec window → Tcompressing ≈ 4ms 

SENSING  

LOW-POWER PHASE (8T active, 6T state retentive) 

HIGH-PERFORMANCE PHASE (6T/8T active) 



• SENSING :  low memory footprint, low workload 

Idea 

COMPRESSING 
SENSING  SENSING  

COMPRESSING 

SYSTEM MEMORY FOOTPRINT AND WORKLOAD 

• COMPRESSING :  high memory footprint, high workload 

• A typical biosignal digital node spends most of the time in sensing and a 
small portion of time in compression 

                 Example : 256 samples/1sec window → Tcompressing ≈ 4ms 

SENSING  

LOW-POWER PHASE (8T active, 6T state retentive) 

HIGH-PERFORMANCE PHASE (6T/8T active) 

IDEA 
 

• a hybrid memory architecture in a single voltage 
domain for ULP multicore biomedical processors is 
proposed 

• 6T/8T-banks enable aggressive voltage scaling during 
phases with low memory usage and low computational 
requirements 

• significant energy savings compared to a 6T-only 
architecture 

• very-low area overhead compared to a 6T-only 
architecture and considerably lower than a 8T-only 
architecture 



Baseline Architecture 
 Architecture for multi-channel biomedical CS 

• 8 Processing Elements (PE) 
• Private Instruction Memories (IM) 
• Logarithmic Interconnect (LIC) 
• 16-banks Data Memory (TCDM) 
• 1 DMA 
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[Rahimi11] 
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Hybrid Memory Architecture 
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 𝐁𝐁𝟎𝟎𝟔𝟔𝟔𝟔 
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Hybrid Memory Architecture 
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High-Performance 
(HP) 

Low-Power (LP) 

6T and 8T portions 
reliable 

(enough SNM) 

6T portion 
data retentive 

mode 
(sufficient hold SNM) 

8T portion 
reliable 

(enough SNM) 

Hybrid 6T/8T memory 
extends the reliable operating range 



LP phase (sensing) 
 PEs are idle (leakage) while DMA is moving samples from AFE to 

TCDM 
 6T banks are in data retentive state (only leakage) 
 8T banks are active and filled with samples by DMA 

 𝐁𝐁𝟎𝟎𝟔𝟔𝟔𝟔 
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CS data (sensing matrix,...) 



HP phase (compression) 
 All PEs are active performing CS in parallel 
 Both 8T (samples) and 6T banks (stack, CS data) are active 
 DMA is inactive 

 𝐁𝐁𝟎𝟎𝟔𝟔𝟔𝟔 
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 Multi-lead (8) ECG processing algorithm 
• bare-metal parallelization (core id) 

CS code analysis 

• Compiler attributes  and linker script SECTIONS for static allocation 

 
 
 
 
 
 
 
 

8T-MEM 

6T-MEM 

TCDM 128KB 

MEMORY 
SIZING 

static code 
analysis 

samples 
(16KB) 

1window 
512 samples/lead 

8 leads 
32bits/sample 

C
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H
C 

samples vector 

measurements 
vector 

compressed data 

• CS algorithm [Mamaghanian11] Matrix 𝚽𝚽 
Ouput y 
3 LUTs 

for CS and HC 
CS DATA 

STACK(s) 



 VSoC: SystemC cycle-accurate virtual platform [Bortolotti13] 
• models 8x16 openRISC-based platform [Gautschi14] 
• vsoc::power_module() collects activity of each module 

Simulation Infrastructure 

• Power numbers 
• 6T, 8T : LP 65nm commercial memory compiler 
• PE, DMA, LIC :  scaled to 65nm from 28nm RTL platform 



 Matrix Multiplication benchmark 
 Scalability analysis and RTL comparison 

SystemC – RTL alignment 

1 2 4
RTL 244645 122426 61339
vsoc 220532 111041 57069
delta (%) 9,86 9,30 6,96
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HP Phase @ (100MHz,1.2V) 
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 All PEs are active performing CS in parallel, DMA is idle 
 Both 8T (samples) and 6T banks (stack, CS data) are active 



LP Phase @ (10MHz,0.6V) 
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@ 10MHz,0.8V 

Hybrid w.r.t 6T-only ≈ -24% 
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PE IC LP TCDM HP TCDM LIC DMA6T-TCDM8T-TCDM

 PEs are idle (leakage) while DMA is moving samples from AFE to 8T-
TCDM 

 6T banks are in data retentive state, 8T banks are active 



 HP Phase: slightly higher power consumption 
 LP Phase: much lower power consumption 
 Overall Efficiency considering the amount of time in LP and HP phases 
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Typical scenario: improvement ≈ 25%! 
on the whole temperature range 



 Estimation of overhead w.r.t. 6T-only (iso-size comparison) 
 Overhead of extra-circuitry for the hybrid memory negligible 

Area Overhead 
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Elemen
t 

Hybrid 
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[mm2] 

PEs 0.85408 0.85408 

6T-
TCDM 

0.70652 0.80746 

8T-
TCDM 

0.13323 - 

6T IM - 0.05047 

8T IM 0.06662 - 

DMA 0.09801 0.09801 

LIC 8x16 0.23348 0.23348 

TOTAL 2.09194 2.04349 
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 Overhead of extra-circuitry for the hybrid memory negligible 
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Elemen
t 

Hybrid 
[mm2] 

Baseline 
[mm2] 

PEs 0.85408 0.85408 

6T-
TCDM 

0.70652 0.80746 

8T-
TCDM 

0.13323 - 

6T IM - 0.05047 

8T IM 0.06662 - 

DMA 0.09801 0.09801 

LIC 8x16 0.23348 0.23348 

TOTAL 2.09194 2.04349 

Overhead w.r.t 6T-only < 2% 

Overhead of an 8T-only solution ≈ 14% 
Leakage would have a high impact! 
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Approximate Motivation  [Bortolotti ISLPED 2014] 

6T-SRAM 

SCMEM 

IMEC 



Hybrid Memory Architecture 
SCMEM: AOI/OAI gates 

IMEC 

EPFL 

UNIBO 



Experimental Results 

≃13% 



Thank You! 
 

Questions? 
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