

Energy management policy for ultra-low power devices

Andrea Bartolini, PhD Università di Bologna & ETHZ NiPS Summer School Perugia 2014

Energy Management – key concept

- Computational devices are designed for the peak performance
- 2. But mostly are used in average condition
- Energy management policies adapt with different granularities and with different mean the system performance and power to the user requested service level
- 4. As the number of resources increase the same functionality can be achieved with different HW composition. The energy management selects the one that preserve performance while minimizing the energy consumption

Outline

- Power in digital systems
- Energy Management
- Monitoring
- Task Allocation
- Reconfiguration

Dynamic Power

- Linear ↓ with ↓ C_{Effective}
- Linear ↓ with ↓ f
- Quadratic ↓ with ↓ V_{dd}
- Cubic ↓ with ↓ both V_{dd} and f

Sub-threshold Leakage Current

- Exponential ↓ with ↓ V_{ds}
- Exponential ↓ with ↑ V_{TH}
- Exponential ↓ with ↓ T

Alpha-Power Thermal Model

Delay:

$$D_{p} = \frac{C_{out} V_{dd}}{I_{ON}} = \frac{C_{out} V_{dd}}{\mu(T) [V_{dd} - V_{th}(T)]^{\alpha}}$$

Carrier Mobility:

$$\mu(T) = \mu(T_0)^{\left(\frac{T_0}{T}\right)^m}$$

Threshold Voltage:

$$V_{th} = V_{th}(T_0) - k(T - T_0)$$

Delay Trend

- For wires, the resistivity is linearly dependent from T
 - Delay increases as T increases
- For LVT cells (V_{dd} >> V_{th})
 - μ dominates w.r.t. V_{th}
 - Delay Increases as T increases
- For HVT cells (V_{dd} ≈ V_{th})
 - V_{th} dominates w.r.t μ
 - Delay decreases as T increases, Indirect Temperature Dependence (ITD)

Thermal Behavior of CMOS gates

Power Wall

Here is a Clue to the Problem

The problem is now called "the Power Wall". It is illustrated in this figure, taken from Patterson & Hennessy.

- The design goal for the late 1990's and early 2000's was to drive the clock rate up. This was done by adding more transistors to a smaller chip.
- Unfortunately, this increased the power dissipation of the CPU chip beyond the capacity of inexpensive cooling techniques

Roadmap for CPU Clock Speed: Around 2005

Here is the result of the best thought in 2005. By 2015, the clock speed of the top "hot chip" would be in the 12 – 15 GHz range.

The CPU Clock Speed Roadmap (A Few Revisions Later)

This reflects the practical experience gained with dense chips that were literally "hot"; they radiated considerable thermal power and were difficult to cool. Law of Physics: All electrical power consumed is eventually radiated as heat.

The MultiCore Approach

Multiple cores on the same chip

- Simpler
- Slower
- Less power demanding

Under-Clocking Relative single-core frequency and Vcc

Multi-Core Energy-Efficient Performance

Relative single-core frequency and Vcc

Outline

- Power in digital systems
- Energy Management
- Monitoring
- Task Allocation
- Reconfiguration

Attacking Dynamic Power

- Dynamic Voltage and Frequency Scaling (DVFS)
 - Reduce voltage, frequency, or both
 - Exploit slack in application execution
 - Cubic dynamic power savings
- Reduce effective switching capacitance
 - Exploit idle or underutilized hardware resources
 - Match hardware resources to application behavior
 - Linear dynamic power savings
 - Complementary to DVFS

General Architecture

- System
- Sensors
 - Performance counter
 - PMU
 - Core temperature
- Actuator Knobs
 - ACPI states
 - P-State → DVFS
 - C-State → P_{GATING}
 - Task allocation
- Controller
 - Reactive
 - Threshold/Heuristic
 - Controller theory
 - Proactive
 - Predictors

State-of-the-art

Dynamic Voltage Frequency Scaling –Two approach in litterature:

- Power Budgetting and Capping[1]:
 - Use built-in power meters as inputs to close-loop feedback controllers for constraining the power consumption to a given budget by reducing the cores clock frequencies.
 - Pros : Avoid power overshots;
 - Contra: Requires power meters, Significant performance penalties;
 - Capping mostly cpu-bound task, more sensitive to performance penalties
- Energy Minimizzation [1][2][3][4][5]:
 - Identifing program phases
 - Scale the frequency to reduce the stall cycle slack and idleness.
 - Low performance overhead
- [1] Z. Wang et al. Feedback Control Algorithms for Power Management of Servers 2008.
- [2] K. Flautner et al. Vertigo: automatic performance-setting for Linux 2002.
- [3] G. Dhiman, Dynamic voltage frequency scaling for multi-tasking systems using online learning, 2007.
- [4] W.Y. Liang Memory-aware dynamic voltage and frequency prediction for portable devices 2008
- [5] A.Bartolini Thermal and energy management of high-performance multicores 2013

DVFS – with deadline or "on-demand governor"

Key idea: Exploit slack by scaling V & f to run evenly across a time quantum

Linux on-demand governor:

DVFS – Memory slack

ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA

High Frequency

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

CPU BOUND TASK

- Performance Loss
- Power reduction
- **Energy Efficiency Loss!**

- Same Performance
- Power reduction
- Energy Efficiency Gain!

Exec Limpower pergy

dram

MEMORY BOUND TASK

Low Frequency

High Frequency

MP-aware DVFS

- Multi-node system exploit communication slack
 - Tested on the intel single cloud computer
 - Iterative search the minimum energy
 - Four searching policy
 - MP agnostic

A.Bartolini «Quantifying the Impact of Frequency Scaling on the Energy Efficiency of the SCC» 2012

Near Threshold Computing

FUNCTIONAL FAILURE

65nm SRAM cell @ NTC failure rate : 5 OM higher

 $\underline{\mathsf{memory}\,\mathsf{V}_{\mathsf{dd}}\,\!\!\uparrow}$

VARIABILITY ?

Moore's Law Twilight Era

NEAR THRESHOLD COMPUTING

NTC pushes the architecture towards a topology in which several processing elements communicate with each other through a fast shared L1 memory system **ENERGY EFFICIENCY**

10x improvement!

PERFORMANCE LOSS

multi-core parallel architectures

Variability and Ambient Temperature

- Critical path delay is affected by temperature [C10]
- ULP devices in NTC are intrinsically safe from self-heating
 - Die temperature is hot-spot free → T_{system} ≈ T_{amb}
- Ambient temperature has strong variations
 - daily/seasonal fluctuations
 - indoor/outdoor transitions

Extreme Minimum

University of Waterloo Weather Station 2005 - Temperature

Variability and Ambient Temperature

- Critical path delay is affected by temperature [C10]
- ULP devices in NTC are intrinsically safe from self-heating

Die temperature is hot-spot free → T_{system} ≈ T_{amb}

Performance Variability can not be effectively addressed
Only by adopting static solutions requiring reactive runtime solutions
To compensate ambient temperature-induced variations

Variability

Variability

Variability

- Ideally
- Silicon Variability
- PVT Variation

@ post-Silicon

MPSoC#1

MPSoC#2

MPSoC#N

Variability

Variability

MPSoC#N

ETH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Variability

- Ideally
- Silicon Variability
- PVT Variation
- Yeld Loss
- Performance Loss

@ post-Silicon

SW

HW

Variability

MPSoC

- Silicon Variability
- PVT Variation
- Yeld Loss
- Performance Loss
- Different QoS

uP

MEM

SW

HW

MPSoC#N

 uP_n

Power Management in ULP

System-level management of variability for energy-efficient multi-core processors

- Monitoring Workload, HW run-time characteristics status
- Re-configuration Tune Power/Resiliency/Speed to user need
- Task Allocation Optimal resource usage

i.e.

i.e.

Monitoring...

i.e.

Monitoring...

Task / Resource	uP1 (Time/Error)	uPn (Time/Error)	Acc (Time/Error)
T1	1s / 10%	3s / 70%	0.5s / 0%
T2	3s / 40%	5s / 40%	
TN	2s / 10%	6s / 60%	0.5s / 0%

.e.

Re.-

configuration

Monitoring...

Allocation...

Task / Resource	uP1 (Time/Error)	uPn (Time/Error)	Acc (Time/Error)
T1	1s / 10%	3s / 70%	0.5s / 0%
T2	3s / 40%	5s / 40%	
TN	2s / 10%	6s / 60%	0.5s / 0%

i.e.

Monitoring...

Allocation...

i.e.

Monitoring...

Allocation...

Re-configuration...

i.e.

Monitoring...

Allocation...

Re-configuration...

i.e.

Monitoring...

Allocation...

Re-configuration...

Outline

- Power in digital systems
- Energy Management
- Monitoring
- Task Allocation
- Reconfiguration

Monitoring – online profiling [Rahimi 2013 DATE] OLIMA MATER STUDIO

- Task descriptors created upon encountering a task directive
- Task fetched by any core encountering a barrier
- task directives identify given portions of code (tasks)
- A task *type* is defined for every occurrence of the task directive in the program

Architecture

- Every core is equipped with:
 - Error sensing (EDS [1])
 - detect any timing error due to dynamic delay variation
 - Error recovery (Multiple-issue replay mechanism [2])
 - to recover the errant instruction without changing the clock frequency

[1] K.A. Bowman, et al., "Energy-Efficient and Metastability-Immune Resilient Circuits for Dynamic Variation Tolerance," IEEE Journal of Solid-State Circuits, 44(1): 49-63, 2009.

[2] K.A. Bowman, et al., "A 45 nm Resilient Microprocessor Core for Dynamic Variation Tolerance," IEEE Journal of Solid-State Circuits, 46(1): 194-208, Jan. 2011.

[3] S. Miermont, P. Vivet, M. Renaudin, "A power supply selector for energy- and area-efficient local dynamic voltage scaling," Proc. *PATMOS*, pp. 556-565, 2007.

Delay Variability Among Pipeline Stages

- We analyze the effect of a full range of operating conditions (temp. range -40C-125C, volt. range .72V-1.1V) on the delay a LEON processor in 65nm TSMC.
- The execute and memory parts are very sensitive to voltage and temperature variations, and also exhibit a large number of critical paths in comparison to the rest of processor.
- Similarly, we anticipate that the instructions that significantly exercise the execute and memory stages are likely to be more vulnerable to voltage and temperature variations > Instruction-level Vulnerability (ILV)

Inter- and Intra-Corner TLV

- TLV across various type of tasks: TLV of each *type* of tasks is different (up to 9 ×) even within the fixed operating condition in a core; (as observed in ILV).
- Inter-corner TLV (across different operating conditions)
 - The average TLV of the six types of tasks is an increasing function of temperature.
 - In contrast, decreasing the voltage from the nominal point of 1.1V increases TLV.

Variation-tolerant OpenMP tasking

- Online TLV characterization
 - TLV table: LUT containing TLV for every core and task type
 - Kept in L1. Parallel inspection from multiple cores
- Each core collects TLV information in parallel
 - Distributed scheduler
 - LUT updated at every task

MASTER PORT

TLV-aware extensions

- Variation-tolerant OpenMP scheduler
 - Proactive scheduling. Idle processors trying to fetch a task check if their TLV for the task is under a certain threshold to minimize number of errant instructions (and costly replay cycles)
 - limited number of rejects for a given tasks, to avoid starvation

Outline

- Power in digital systems
- Energy Management
- Monitoring
- Task Allocation
- Reconfiguration

Task Allocation

[Paterna TC 2012]

GOAL: find a **task allocation** technique for **variability-affected multicore** platform which **minimizes the energy consumption** while meeting a performance constraint

- Proposes a task allocation technique which provides a near-optimal solution
- The technique can be applied at run-time
- It is based on a 2-step problem formulation

FORMULATION HYPOTHESIS

WORKLOAD:

- The tasks are independent and synchronized on a barrier
- 2. The length of the tasks in terms of instructions is known

T1 T2 T3 T4

PLATFORM:

- 1. PE can be active or idle
- 2. For each PE are known its own
 - Clock frequency
 - Power consumption in active
 - Power consumption in idle

LP+BP problem formulation

- 1° step, LP formulation:
- disregards the task granularity but only considers the total number of instr.
- provides the cycle budget of each core (how many instr. a core can execute)

Key properties! It can be **solved** through a **closed form**No time-demanding Algorithm (i.e. Simplex)

ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA

Closed Form Solution [2012 Paterna TC]

Proven to be optimal!!!

- Two candidate solutions (i.e. meet the time constraint)
- Take the one which makes the platform to consume less energy

LP+BP problem formulation

2° step, Bin Packing formulation: it considers the task granularity it fits the tasks into the cycle budgets

MPEG2: Energy vs. Frame-rate

□RANDOM △RF +RP ○RN XLP+BP

Outline

- Power in digital systems
- Energy Management
- Monitoring
- Task Allocation
- Reconfiguration

Compressed Sensing [Bortolotti 2014 Date]

- emerging paradigm for signal acquisition/compression [Donoho06]
- enables sub-Nyquist sampling rate for sparse signals
- reduces the amount of samples required in processing and storage

- Sparsity of x with constraints on $\Phi \to \text{convex optimization problem}$
- ECG: x is not sparse in time domain but is sparse in a wavelet domain
 - SoA: low-power embedded ECG monitoring [Mamaghanian11]

Multi-core Architecture

- medical grade monitoring requires multi-channel signal analysis
- multi-channel processing for several biosignals (ECG, EMG,...) is often embarrassingly parallel
- multi-core architectures enable more aggressive voltage-frequency scaling than single-core solutions
- SoA [Dogan12, Munir13]
 - proved their efficiency compared to single-core solutions
 - at ultra-low workload requirements leakage dominates
 - aggressive voltage scaling cannot be applied due to reliability issues for the memories

Voltage Scaling and Memory

- Voltage Scaling is an effective technique to improve energy efficiency
- Embedded SRAM memory
 - Energy bottleneck at low-voltage
 - classic 6T cell structure has reliability issues

- Alternative SRAM designs (8T, 10T, SCMEM...)
 - more robust
 - area overhead

Voltage Scaling and Memory

- Voltage Scaling is an effective technique to improve energy efficiency
- Embedded SRAM memory
 - Energy bottleneck at low-voltage
 - classic 6T cell structure has reliability issues

- Alternative SRAM designs (8T, 10T, SCMEM...)
 - more robust
 - area overhead

Swiss Federal Institute of Technology Zurich

Idea

SYSTEM MEMORY FOOTPRINT AND WORKLOAD

SENSING: low memory footprint, low workload

LOW-POWER PHASE (8T active, 6T state retentive)

COMPRESSING: high memory footprint, high workload

HIGH-PERFORMANCE PHASE (6T/8T active)

 A typical biosignal digital node spends most of the time in sensing and a small portion of time in compression

Example : 256 samples/1sec window \rightarrow $T_{compressing} \approx 4ms$

Idea

SYSTEM MEMORY FOOTPRINT AND WORKLOAD

IDEA

- a hybrid memory architecture in a single voltage domain for ULP multicore biomedical processors is proposed
- 6T/8T-banks enable aggressive voltage scaling during phases with low memory usage and low computational requirements
- significant energy savings compared to a 6T-only architecture
- very-low area overhead compared to a 6T-only architecture and considerably lower than a 8T-only architecture

Multi-channel biosignals

Baseline Architecture

- Architecture for multi-channel biomedical CS
 - 8 Processing Elements (PE)
 - Private Instruction Memories (IM)
 - Logarithmic Interconnect (LIC)
 - 16-banks Data Memory (TCDM)
 - 1 DMA

Logarithmic Interconnect (LIC)

Logarithmic Interconnect (LIC)

Hybrid Memory Architecture

ALMA MATER STUDIORUM UNIVERSITA DI BOLOGNA

Hybrid Memory Architecture

ALMA MATER STUDIORUM UNIVERSITA DI BOLOGNA

LP phase (sensing)

- PEs are idle (leakage) while DMA is moving samples from AFE to TCDM
- 6T banks are in data retentive state (only leakage)
- 8T banks are active and filled with samples by DMA

HP phase (compression)

- All PEs are active performing CS in parallel
- Both 8T (samples) and 6T banks (stack, CS data) are active
- DMA is inactive

Matrix Φ

CS code analysis

- Multi-lead (8) ECG processing algorithm
 - bare-metal parallelization (core id)
- CS algorithm [Mamaghanian11]

• Compiler attributes and linker script SECTIONS for static allocation

Simulation Infrastructure

- VSoC: SystemC cycle-accurate virtual platform [Bortolotti13]
 - models 8x16 openRISC-based platform [Gautschi14]
 - vsoc::power_module() collects activity of each module

Power numbers

- 6T, 8T: LP 65nm commercial memory compiler
- PE, DMA, LIC: scaled to 65nm from 28nm RTL platform

	DYNAMIC [μW/MHz]					
,	6Т-мем		8Т-мем		PE	
	HP	LP	HP	LP	HP	LP
IDLE	2.20	0.54	2.32	0.56		
READ	11.79	2.87	12.04	2.93	68.76	16.74
WRITE	13.88	3.38	14.11	3.43		
	leakage [μW]					
·	6Т-мем		8Т-мем		PE	
	HP	LP	HP	LP	HP	LP
-40 C	0.61	0.31	0.27	0.13	0.63	0.32
25 C	11.56	5.89	5.35	2.63	11.18	5.69
125 C	326.77	166.23	158.77	80.77	338.44	172.17

SystemC – RTL alignment

- Matrix Multiplication benchmark
 - Scalability analysis and RTL comparison

HP Phase @ (100MHz,1.2V)

- All PEs are active performing CS in parallel, DMA is idle
- Both 8T (samples) and 6T banks (stack, CS data) are active

BASELINE TCDM 128KB @ 100MHz,1.2V

LP Phase @ (10MHz,0.6V)

- PEs are idle (leakage) while DMA is moving samples from AFE to 8T-TCDM
- 6T banks are in data retentive state, 8T banks are active

BASELINE TCDM 16KB @ 10MHz,0.8V

Swiss Federal Institute of Technology Zurich

Energy Efficiency

- HP Phase: slightly higher power consumption
- LP Phase: much lower power consumption
- Overall Efficiency considering the amount of time in LP and HP phases

Area Overhead

- Estimation of overhead w.r.t. 6T-only (iso-size comparison)
- Overhead of extra-circuitry for the hybrid memory negligible

Elemen t	Hybrid [mm²]	Baseline [mm²]
PEs	0.85408	0.85408
6T- TCDM	0.70652	0.80746
8T- TCDM	0.13323	-
6T IM	-	0.05047
8T IM	0.06662	-
DMA	0.09801	0.09801
LIC 8x16	0.23348	0.23348
TOTAL	2.09194	2.04349

Swiss Federal Institute of Technology Zurich

Area Overhead

- Estimation of overhead w.r.t. 6T-only (iso-size comparison)
- Overhead of extra-circuitry for the hybrid memory negligible

Elemen t	Hybrid [mm²]	Baseline [mm²]			
PEs	0.85408	0.85408			
6T-	0.70652	0.80746			
Overhead w.r.t 6T-only < 2%					
TCDM					
6T IM	-	0.05047			
8T IM	0.06662	-			
DMA	0.09801	0.09801			
LIC 8x16	0.23348	0.23348			

Overhead of an 8T-only solution ≈ 14% Leakage would have a high impact!

Outline

- Power in digital systems
- Energy Management
- Monitoring
- Task Allocation
- Reconfiguration
- Approximation

Swiss Federal Institute of Technology Zurich

Approximate Motivation [Bortolotti ISLPED 2014] *** INDICATION | Control of the c

Hybrid Memory Architecture

SCMEM: AOI/OAI gates

IMEC

$$\min_{\tilde{\mathbf{A}}, \tilde{\mathbf{E}}} \|\tilde{\mathbf{A}}\|_{1,2} + \lambda \|\tilde{\mathbf{E}}\|_{1} \quad \text{s.t.:} \|(\mathbf{\Phi} + \tilde{\mathbf{E}})\mathbf{\Psi}\tilde{\mathbf{A}} - \mathbf{Y}\|_{2} = 0$$
EPFL

ELEMENT	$6T/SCMEM$ $[\mu m^2]$	6 T-ONLY $[\mu m^2]$	SCMEM-ONLY $[\mu m^2]$
PEs	323439	323439	323439
$_{ m IM}$	132819	97960	132819
SCM TCDM	332048	-	597686
6T TCDM	195920	431968	-
TOT TCDM	527968	431968	597686
LIC 8x16	88420	88420	88420
TOTAL	1072646	941787	1142364

≃13%

Swiss Federal Institute of Technology Zurich

Thank You! Questions?

References #1

- [Bartolini TPDS 13] Bartolini, A; Cacciari, M.; Tilli, A; Benini, L., "Thermal and Energy Management of High-Performance Multicores: Distributed and Self-Calibrating Model-Predictive Controller," Parallel and Distributed Systems, IEEE Transactions on, vol.24, no.1, pp.170,183, Jan. 2013
- [Bartolini DATE 12] Bartolini, A; Sadri, M.; Furst, J.; Coskun, AK.; Benini, L., "Quantifying the impact of frequency scaling on the energy efficiency of the single-chip cloud computer," Design, Automation & Test in Europe Conference & Exhibition (DATE), 2012, vol., no., pp.181,186, 12-16 March 2012
- [Paterna TC 2012] Paterna, F.; Acquaviva, A; Caprara, A; Papariello, F.; Desoli, G.; Benini, L., "Variability-Aware Task Allocation for Energy-Efficient Quality of Service Provisioning in Embedded Streaming Multimedia Applications," Computers, IEEE Transactions on, vol.61, no.7, pp.939,953, July 2012.
- [Rahimi DATE 13] Rahimi, Abbas; Marongiu, Andrea; Burgio, Paolo; Gupta, Rajesh K.; Benini, Luca, "Variation-tolerant OpenMP tasking on tightly-coupled processor clusters," Design, Automation & Test in Europe Conference & Exhibition (DATE), 2013, vol., no., pp.541,546, 18-22 March 2013
- [Bortolotti DATE 14] D Bortolotti, A Bartolini, C Weis, D Rossi, L Benini, «Hybrid memory architecture for voltage scaling in ultra-low power multi-core biomedical processors» Design, Automation and Test in Europe Conference and Exhibition (DATE), 2014
- [Bortolotti ISLPED 14] Bortolotti, Daniele, et al. "Approximate Compressed Sensing: Ultra-Low Power Biosignal Processing via Aggressive Voltage Scaling on a Hybrid Memory Multi-core Processor." Proc. of 2014 IEEE International Symposium on Low Power Electronics and Design (ISLPED 2014). Vol. 1. No. EPFL-CONF-200128. IEEE/ACM Press, 2014.

References #2

- [Gautschi14] Gautschi M.et al., "Customizing an Open Source Processor to Fit in an Ultra-Low Power Cluster with a Shared L1 Memory", In: GLSVLSI 2014 (to appear).
- [Bortolotti13] Bortolotti D. et al., "VirtualSoC: a Full-System Simulation Environment for Massively Parallel Heterogeneous System-on-Chip", In: IPDPWS 2013